// SPDX-License-Identifier: GPL-2.0 /* * CPU accounting code for task groups. * * Based on the work by Paul Menage (menage@google.com) and Balbir Singh * (balbir@in.ibm.com). */ #include "sched.h" /* Time spent by the tasks of the CPU accounting group executing in ... */ enum cpuacct_stat_index { CPUACCT_STAT_USER, /* ... user mode */ CPUACCT_STAT_SYSTEM, /* ... kernel mode */ CPUACCT_STAT_NSTATS, }; static const char * const cpuacct_stat_desc[] = { [CPUACCT_STAT_USER] = "user", [CPUACCT_STAT_SYSTEM] = "system", }; struct cpuacct_usage { u64 usages[CPUACCT_STAT_NSTATS]; struct prev_cputime prev_cputime1; /* utime and stime */ struct prev_cputime prev_cputime2; /* user and nice */ } ____cacheline_aligned; #ifdef CONFIG_SCHED_SLI /* Maintain various statistics */ struct cpuacct_alistats { u64 nr_migrations; } ____cacheline_aligned; #endif enum sched_lat_stat_item { SCHED_LAT_WAIT, SCHED_LAT_BLOCK, SCHED_LAT_IOBLOCK, SCHED_LAT_CGROUP_WAIT, SCHED_LAT_NR_STAT }; /* * [0, 1ms) * [1, 4ms) * [4, 7ms) * [7, 10ms) * [10, 100ms) * [100, 500ms) * [500, 1000ms) * [1000, 5000ms) * [5000, 10000ms) * [10000ms, INF) * total(ms) */ /* Scheduler latency histogram distribution, in milliseconds */ enum sched_lat_count_t { SCHED_LAT_0_1, SCHED_LAT_1_4, SCHED_LAT_4_7, SCHED_LAT_7_10, SCHED_LAT_10_20, SCHED_LAT_20_30, SCHED_LAT_30_40, SCHED_LAT_40_50, SCHED_LAT_50_100, SCHED_LAT_100_500, SCHED_LAT_500_1000, SCHED_LAT_1000_5000, SCHED_LAT_5000_10000, SCHED_LAT_10000_INF, SCHED_LAT_TOTAL, SCHED_LAT_NR, SCHED_LAT_NR_COUNT, }; struct sched_cgroup_lat_stat_cpu { unsigned long item[SCHED_LAT_NR_STAT][SCHED_LAT_NR_COUNT]; }; static inline enum sched_lat_count_t get_sched_lat_count_idx(u64 msecs) { if (msecs < 1) return SCHED_LAT_0_1; if (msecs < 10) return SCHED_LAT_0_1 + (msecs + 2) / 3; if (msecs < 50) return SCHED_LAT_7_10 + msecs / 10; if (msecs < 100) return SCHED_LAT_50_100; if (msecs < 1000) return SCHED_LAT_100_500 + (msecs / 500); if (msecs < 10000) return SCHED_LAT_1000_5000 + (msecs / 5000); return SCHED_LAT_10000_INF; } /* track CPU usage of a group of tasks and its child groups */ struct cpuacct { struct cgroup_subsys_state css; /* cpuusage holds pointer to a u64-type object on every CPU */ struct cpuacct_usage __percpu *cpuusage; #ifdef CONFIG_SCHED_SLI struct cpuacct_alistats __percpu *alistats; struct sched_cgroup_lat_stat_cpu __percpu *lat_stat_cpu; #endif struct kernel_cpustat __percpu *cpustat; ALI_HOTFIX_RESERVE(1) ALI_HOTFIX_RESERVE(2) ALI_HOTFIX_RESERVE(3) ALI_HOTFIX_RESERVE(4) }; static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) { return container_of(global_cgroup_css(cgrp, cpuacct_cgrp_id), struct cpuacct, css); } static inline struct cpuacct *css_ca(struct cgroup_subsys_state *css) { return css ? container_of(css, struct cpuacct, css) : NULL; } /* Return CPU accounting group to which this task belongs */ static inline struct cpuacct *task_ca(struct task_struct *tsk) { return css_ca(task_css(tsk, cpuacct_cgrp_id)); } static inline struct cpuacct *parent_ca(struct cpuacct *ca) { return css_ca(ca->css.parent); } static DEFINE_PER_CPU(struct cpuacct_usage, root_cpuacct_cpuusage); #ifdef CONFIG_SCHED_SLI static DEFINE_PER_CPU(struct cpuacct_alistats, root_alistats); static DEFINE_PER_CPU(struct sched_cgroup_lat_stat_cpu, root_lat_stat_cpu); #endif static struct cpuacct root_cpuacct = { .cpustat = &kernel_cpustat, .cpuusage = &root_cpuacct_cpuusage, #ifdef CONFIG_SCHED_SLI .alistats = &root_alistats, .lat_stat_cpu = &root_lat_stat_cpu, #endif }; #ifdef CONFIG_SCHED_SLI static DEFINE_STATIC_KEY_TRUE(cpuacct_no_sched_lat); static int cpuacct_sched_lat_enabled_show(struct seq_file *m, void *v) { seq_printf(m, "%d\n", !static_key_enabled(&cpuacct_no_sched_lat)); return 0; } static int cpuacct_sched_lat_enabled_open(struct inode *inode, struct file *file) { return single_open(file, cpuacct_sched_lat_enabled_show, NULL); } static ssize_t cpuacct_sched_lat_enabled_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { char val = -1; int ret = count; if (count < 1 || *ppos) { ret = -EINVAL; goto out; } if (copy_from_user(&val, ubuf, 1)) { ret = -EFAULT; goto out; } switch (val) { case '0': static_branch_enable(&cpuacct_no_sched_lat); break; case '1': static_branch_disable(&cpuacct_no_sched_lat); break; default: ret = -EINVAL; } out: return ret; } static const struct file_operations cpuacct_sched_lat_enabled_fops = { .open = cpuacct_sched_lat_enabled_open, .read = seq_read, .write = cpuacct_sched_lat_enabled_write, .llseek = seq_lseek, .release = single_release, }; static int __init init_cpuacct_sched_lat_enabled(void) { struct proc_dir_entry *ca_dir, *sched_lat_enabled_file; ca_dir = proc_mkdir("cpusli", NULL); if (!ca_dir) return -ENOMEM; sched_lat_enabled_file = proc_create("sched_lat_enabled", 0600, ca_dir, &cpuacct_sched_lat_enabled_fops); if (!sched_lat_enabled_file) { remove_proc_entry("cpusli", NULL); return -ENOMEM; } return 0; } __initcall(init_cpuacct_sched_lat_enabled); void task_ca_increase_nr_migrations(struct task_struct *tsk) { struct cpuacct *ca; rcu_read_lock(); ca = task_ca(tsk); if (ca) this_cpu_ptr(ca->alistats)->nr_migrations++; rcu_read_unlock(); } void task_ca_update_block(struct task_struct *tsk, u64 runtime) { int idx; enum sched_lat_stat_item s; struct cpuacct *ca; unsigned int msecs; if (static_branch_likely(&cpuacct_no_sched_lat)) return; rcu_read_lock(); ca = task_ca(tsk); if (!ca) { rcu_read_unlock(); return; } if (tsk->in_iowait) s = SCHED_LAT_IOBLOCK; else s = SCHED_LAT_BLOCK; msecs = runtime >> 20; /* Proximately to speed up */ idx = get_sched_lat_count_idx(msecs); this_cpu_inc(ca->lat_stat_cpu->item[s][idx]); this_cpu_inc(ca->lat_stat_cpu->item[s][SCHED_LAT_NR]); this_cpu_add(ca->lat_stat_cpu->item[s][SCHED_LAT_TOTAL], runtime); rcu_read_unlock(); } void cpuacct_update_latency(struct sched_entity *se, u64 delta) { int idx; enum sched_lat_stat_item s; struct cpuacct *ca; unsigned int msecs; struct task_group *tg; if (static_branch_likely(&cpuacct_no_sched_lat)) return; rcu_read_lock(); tg = se->cfs_rq->tg; ca = cgroup_ca(tg->css.cgroup); if (!ca) { rcu_read_unlock(); return; } if (entity_is_task(se)) s = SCHED_LAT_WAIT; else s = SCHED_LAT_CGROUP_WAIT; msecs = delta >> 20; /* Proximately to speed up */ idx = get_sched_lat_count_idx(msecs); this_cpu_inc(ca->lat_stat_cpu->item[s][idx]); this_cpu_inc(ca->lat_stat_cpu->item[s][SCHED_LAT_NR]); this_cpu_add(ca->lat_stat_cpu->item[s][SCHED_LAT_TOTAL], delta); rcu_read_unlock(); } #endif static void cpuacct_clean_up(void **ptr) { struct cpuacct *ca = *ptr; struct cpuacct_usage __percpu *cpuusage = ca->cpuusage; struct kernel_cpustat __percpu *cpustat = ca->cpustat; #ifdef CONFIG_SCHED_SLI struct cpuacct_alistats __percpu *alistats = ca->alistats; struct sched_cgroup_lat_stat_cpu __percpu *lat_stat_cpu = ca->lat_stat_cpu; #endif int i; for_each_possible_cpu(i) { memset(per_cpu_ptr(cpuusage, i), 0, sizeof(*cpuusage)); memset(per_cpu_ptr(cpustat, i), 0, sizeof(*cpustat)); #ifdef CONFIG_SCHED_SLI memset(per_cpu_ptr(alistats, i), 0, sizeof(*alistats)); memset(per_cpu_ptr(lat_stat_cpu, i), 0, sizeof(*lat_stat_cpu)); #endif } memset(ca, 0, sizeof(*ca)); ca->cpuusage = cpuusage; ca->cpustat = cpustat; #ifdef CONFIG_SCHED_SLI ca->alistats = alistats; ca->lat_stat_cpu = lat_stat_cpu; #endif } static void cpuacct_free(void **ptr) { struct cpuacct *ca = *ptr; free_percpu(ca->cpustat); free_percpu(ca->cpuusage); #ifdef CONFIG_SCHED_SLI free_percpu(ca->alistats); free_percpu(ca->lat_stat_cpu); #endif kfree(ca); } CACHE_HEADER(cpuacct_cache_header, DEFAULT_CACHE_SIZE, cpuacct_clean_up, cpuacct_free); static void cpuacct_init(struct cpuacct *ca) { int i; for_each_possible_cpu(i) { prev_cputime_init(&per_cpu_ptr(ca->cpuusage, i)->prev_cputime1); prev_cputime_init(&per_cpu_ptr(ca->cpuusage, i)->prev_cputime2); } } /* Create a new CPU accounting group */ static struct cgroup_subsys_state * cpuacct_css_alloc(struct cgroup_subsys_state *parent_css) { struct cpuacct *ca; if (!parent_css) return &root_cpuacct.css; if (get_from_cache(&cpuacct_cache_header, (void **)&ca, 1)) { cpuacct_init(ca); return &ca->css; } ca = kzalloc(sizeof(*ca), GFP_KERNEL); if (!ca) goto out; ca->cpuusage = alloc_percpu(struct cpuacct_usage); if (!ca->cpuusage) goto out_free_ca; ca->cpustat = alloc_percpu(struct kernel_cpustat); if (!ca->cpustat) goto out_free_cpuusage; #ifdef CONFIG_SCHED_SLI ca->alistats = alloc_percpu(struct cpuacct_alistats); if (!ca->alistats) goto out_free_cpustat; ca->lat_stat_cpu = alloc_percpu(struct sched_cgroup_lat_stat_cpu); if (!ca->lat_stat_cpu) goto out_free_alistats; #endif cpuacct_init(ca); return &ca->css; #ifdef CONFIG_SCHED_SLI out_free_alistats: free_percpu(ca->alistats); out_free_cpustat: free_percpu(ca->cpustat); #endif out_free_cpuusage: free_percpu(ca->cpuusage); out_free_ca: kfree(ca); out: return ERR_PTR(-ENOMEM); } /* Destroy an existing CPU accounting group */ static void cpuacct_css_free(struct cgroup_subsys_state *css) { struct cpuacct *ca = css_ca(css); if (put_to_cache(&cpuacct_cache_header, (void **)&ca, 1)) return; cpuacct_free((void **)&ca); } static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu, enum cpuacct_stat_index index) { struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); u64 data; /* * We allow index == CPUACCT_STAT_NSTATS here to read * the sum of suages. */ BUG_ON(index > CPUACCT_STAT_NSTATS); #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit read safe on 32-bit platforms. */ raw_spin_lock_irq(&cpu_rq(cpu)->lock); #endif if (index == CPUACCT_STAT_NSTATS) { int i = 0; data = 0; for (i = 0; i < CPUACCT_STAT_NSTATS; i++) data += cpuusage->usages[i]; } else { data = cpuusage->usages[index]; } #ifndef CONFIG_64BIT raw_spin_unlock_irq(&cpu_rq(cpu)->lock); #endif return data; } static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val) { struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); int i; #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit write safe on 32-bit platforms. */ raw_spin_lock_irq(&cpu_rq(cpu)->lock); #endif for (i = 0; i < CPUACCT_STAT_NSTATS; i++) cpuusage->usages[i] = val; #ifndef CONFIG_64BIT raw_spin_unlock_irq(&cpu_rq(cpu)->lock); #endif } /* Return total CPU usage (in nanoseconds) of a group */ static u64 __cpuusage_read(struct cgroup_subsys_state *css, enum cpuacct_stat_index index) { struct cpuacct *ca = css_ca(css); u64 totalcpuusage = 0; int i; for_each_possible_cpu(i) totalcpuusage += cpuacct_cpuusage_read(ca, i, index); return totalcpuusage; } static u64 cpuusage_user_read(struct cgroup_subsys_state *css, struct cftype *cft) { return __cpuusage_read(css, CPUACCT_STAT_USER); } static u64 cpuusage_sys_read(struct cgroup_subsys_state *css, struct cftype *cft) { return __cpuusage_read(css, CPUACCT_STAT_SYSTEM); } static u64 cpuusage_read(struct cgroup_subsys_state *css, struct cftype *cft) { return __cpuusage_read(css, CPUACCT_STAT_NSTATS); } static int cpuusage_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct cpuacct *ca = css_ca(css); int cpu; /* * Only allow '0' here to do a reset. */ if (val) return -EINVAL; for_each_possible_cpu(cpu) cpuacct_cpuusage_write(ca, cpu, 0); return 0; } static int __cpuacct_percpu_seq_show(struct seq_file *m, enum cpuacct_stat_index index) { struct cpuacct *ca = css_ca(seq_css(m)); u64 percpu; int i; for_each_possible_cpu(i) { percpu = cpuacct_cpuusage_read(ca, i, index); seq_printf(m, "%llu ", (unsigned long long) percpu); } seq_printf(m, "\n"); return 0; } static int cpuacct_percpu_user_seq_show(struct seq_file *m, void *V) { return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_USER); } static int cpuacct_percpu_sys_seq_show(struct seq_file *m, void *V) { return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_SYSTEM); } static int cpuacct_percpu_seq_show(struct seq_file *m, void *V) { return __cpuacct_percpu_seq_show(m, CPUACCT_STAT_NSTATS); } static int cpuacct_all_seq_show(struct seq_file *m, void *V) { struct cpuacct *ca = css_ca(seq_css(m)); int index; int cpu; seq_puts(m, "cpu"); for (index = 0; index < CPUACCT_STAT_NSTATS; index++) seq_printf(m, " %s", cpuacct_stat_desc[index]); seq_puts(m, "\n"); for_each_possible_cpu(cpu) { struct cpuacct_usage *cpuusage = per_cpu_ptr(ca->cpuusage, cpu); seq_printf(m, "%d", cpu); for (index = 0; index < CPUACCT_STAT_NSTATS; index++) { #ifndef CONFIG_64BIT /* * Take rq->lock to make 64-bit read safe on 32-bit * platforms. */ raw_spin_lock_irq(&cpu_rq(cpu)->lock); #endif seq_printf(m, " %llu", cpuusage->usages[index]); #ifndef CONFIG_64BIT raw_spin_unlock_irq(&cpu_rq(cpu)->lock); #endif } seq_puts(m, "\n"); } return 0; } static int cpuacct_stats_show(struct seq_file *sf, void *v) { struct cpuacct *ca = css_ca(seq_css(sf)); s64 val[CPUACCT_STAT_NSTATS]; int cpu; int stat; memset(val, 0, sizeof(val)); for_each_possible_cpu(cpu) { u64 *cpustat = per_cpu_ptr(ca->cpustat, cpu)->cpustat; val[CPUACCT_STAT_USER] += cpustat[CPUTIME_USER]; val[CPUACCT_STAT_USER] += cpustat[CPUTIME_NICE]; val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SYSTEM]; val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_IRQ]; val[CPUACCT_STAT_SYSTEM] += cpustat[CPUTIME_SOFTIRQ]; } for (stat = 0; stat < CPUACCT_STAT_NSTATS; stat++) { seq_printf(sf, "%s %lld\n", cpuacct_stat_desc[stat], (long long)nsec_to_clock_t(val[stat])); } return 0; } #ifdef CONFIG_SCHED_SLI #ifndef arch_idle_time #define arch_idle_time(cpu) 0 #endif static inline struct task_group *cgroup_tg(struct cgroup *cgrp) { return container_of(global_cgroup_css(cgrp, cpu_cgrp_id), struct task_group, css); } void cgroup_idle_start(struct sched_entity *se) { unsigned long flags; u64 clock; if (!schedstat_enabled()) return; clock = __rq_clock_broken(se->cfs_rq->rq); local_irq_save(flags); write_seqlock(&se->idle_seqlock); __schedstat_set(se->cg_idle_start, clock); write_sequnlock(&se->idle_seqlock); spin_lock(&se->iowait_lock); if (schedstat_val(se->cg_nr_iowait)) __schedstat_set(se->cg_iowait_start, clock); spin_unlock(&se->iowait_lock); local_irq_restore(flags); } void cgroup_idle_end(struct sched_entity *se) { unsigned long flags; u64 clock; u64 idle_start, iowait_start; if (!schedstat_enabled()) return; clock = __rq_clock_broken(se->cfs_rq->rq); local_irq_save(flags); write_seqlock(&se->idle_seqlock); idle_start = schedstat_val(se->cg_idle_start); __schedstat_add(se->cg_idle_sum, clock - idle_start); __schedstat_set(se->cg_idle_start, 0); write_sequnlock(&se->idle_seqlock); spin_lock(&se->iowait_lock); if (schedstat_val(se->cg_nr_iowait)) { iowait_start = schedstat_val(se->cg_iowait_start); __schedstat_add(se->cg_iowait_sum, clock - iowait_start); __schedstat_set(se->cg_iowait_start, 0); } spin_unlock(&se->iowait_lock); local_irq_restore(flags); } void cpuacct_cpuset_changed(struct cgroup *cgrp, struct cpumask *deleted, struct cpumask *added) { struct task_group *tg; struct sched_entity *se; int cpu; if (!schedstat_enabled()) return; rcu_read_lock(); tg = cgroup_tg(cgrp); if (!tg) { rcu_read_unlock(); return; } if (added) { /* Mark newly added cpus as newly-idle */ for_each_cpu(cpu, added) { se = tg->se[cpu]; cgroup_idle_start(se); __schedstat_add(se->cg_ineffective_sum, __rq_clock_broken(cpu_rq(cpu)) - se->cg_ineffective_start); __schedstat_set(se->cg_ineffective_start, 0); } } if (deleted) { /* Mark ineffective_cpus as idle-invalid */ for_each_cpu(cpu, deleted) { se = tg->se[cpu]; cgroup_idle_end(se); /* Use __rq_clock_broken to avoid warning */ __schedstat_set(se->cg_ineffective_start, __rq_clock_broken(cpu_rq(cpu))); } } rcu_read_unlock(); } static inline unsigned long nr_uninterruptible(void) { unsigned long i, sum = 0; for_each_possible_cpu(i) sum += cpu_rq(i)->nr_uninterruptible; /* * Since we read the counters lockless, it might be slightly * inaccurate. Do not allow it to go below zero though: */ if (unlikely((long)sum < 0)) sum = 0; return sum; } #ifdef CONFIG_CFS_BANDWIDTH static inline bool tg_cfs_throttled(struct task_group *tg, int cpu) { return tg->cfs_rq[cpu]->throttle_count; } #else static inline bool tg_cfs_throttled(struct task_group *tg, int cpu) { return false; } #endif #ifdef CONFIG_RT_GROUP_SCHED static inline bool tg_rt_throttled(struct task_group *tg, int cpu) { return tg->rt_rq[cpu]->rt_throttled && !tg->rt_rq[cpu]->rt_nr_boosted; } #endif static unsigned long ca_running(struct cpuacct *ca, int cpu) { unsigned long nr_running = 0; struct cgroup *cgrp = ca->css.cgroup; struct task_group *tg; /* Make sure it is only called for non-root cpuacct */ if (ca == &root_cpuacct) return 0; rcu_read_lock(); tg = cgroup_tg(cgrp); if (unlikely(!tg)) goto out; if (!tg_cfs_throttled(tg, cpu)) nr_running += tg->cfs_rq[cpu]->h_nr_running; #ifdef CONFIG_RT_GROUP_SCHED if (!tg_rt_throttled(tg, cpu)) nr_running += tg->rt_rq[cpu]->rt_nr_running; #endif /* SCHED_DEADLINE doesn't support cgroup yet */ out: rcu_read_unlock(); return nr_running; } static unsigned long ca_uninterruptible(struct cpuacct *ca, int cpu) { unsigned long nr = 0; struct cgroup *cgrp = ca->css.cgroup; struct task_group *tg; /* Make sure it is only called for non-root cpuacct */ if (ca == &root_cpuacct) return nr; rcu_read_lock(); tg = cgroup_tg(cgrp); if (unlikely(!tg)) goto out_rcu_unlock; nr = tg->cfs_rq[cpu]->nr_uninterruptible; #ifdef CONFIG_RT_GROUP_SCHED nr += tg->rt_rq[cpu]->nr_uninterruptible; #endif out_rcu_unlock: rcu_read_unlock(); return nr; } static void __cpuacct_get_usage_result(struct cpuacct *ca, int cpu, struct task_group *tg, struct cpuacct_usage_result *res) { struct kernel_cpustat *kcpustat; struct cpuacct_usage *cpuusage; struct task_cputime cputime; u64 tick_user, tick_nice, tick_sys, left, right; struct sched_entity *se; kcpustat = per_cpu_ptr(ca->cpustat, cpu); if (unlikely(!tg)) { memset(res, 0, sizeof(*res)); return; } se = tg->se[cpu]; cpuusage = per_cpu_ptr(ca->cpuusage, cpu); tick_user = kcpustat->cpustat[CPUTIME_USER]; tick_nice = kcpustat->cpustat[CPUTIME_NICE]; tick_sys = kcpustat->cpustat[CPUTIME_SYSTEM]; /* Calculate system run time */ cputime.sum_exec_runtime = cpuusage->usages[CPUACCT_STAT_USER] + cpuusage->usages[CPUACCT_STAT_SYSTEM]; cputime.utime = tick_user + tick_nice; cputime.stime = tick_sys; cputime_adjust(&cputime, &cpuusage->prev_cputime1, &left, &right); res->system = right; /* Calculate user and nice run time */ cputime.sum_exec_runtime = left; /* user + nice */ cputime.utime = tick_user; cputime.stime = tick_nice; cputime_adjust(&cputime, &cpuusage->prev_cputime2, &left, &right); res->user = left; res->nice = right; res->irq = kcpustat->cpustat[CPUTIME_IRQ]; res->softirq = kcpustat->cpustat[CPUTIME_SOFTIRQ]; if (se && schedstat_enabled()) { unsigned int seq; unsigned long flags; u64 idle_start, ineff, ineff_start, elapse, complement; u64 clock, iowait_start; do { seq = read_seqbegin(&se->idle_seqlock); res->idle = schedstat_val(se->cg_idle_sum); idle_start = schedstat_val(se->cg_idle_start); clock = cpu_clock(cpu); if (idle_start && clock > idle_start) res->idle += clock - idle_start; } while (read_seqretry(&se->idle_seqlock, seq)); ineff = schedstat_val(se->cg_ineffective_sum); ineff_start = schedstat_val(se->cg_ineffective_start); if (ineff_start) __schedstat_add(ineff, clock - ineff_start); spin_lock_irqsave(&se->iowait_lock, flags); res->iowait = schedstat_val(se->cg_iowait_sum); iowait_start = schedstat_val(se->cg_iowait_start); if (iowait_start) __schedstat_add(res->iowait, clock - iowait_start); spin_unlock_irqrestore(&se->iowait_lock, flags); res->steal = 0; elapse = clock - schedstat_val(se->cg_init_time); complement = res->idle + se->sum_exec_raw + ineff; if (elapse > complement) res->steal = elapse - complement; res->idle -= res->iowait; } else { res->idle = res->iowait = res->steal = 0; } res->guest = kcpustat->cpustat[CPUTIME_GUEST]; res->guest_nice = kcpustat->cpustat[CPUTIME_GUEST_NICE]; } static int cpuacct_proc_stats_show(struct seq_file *sf, void *v) { struct cpuacct *ca = css_ca(seq_css(sf)); struct cgroup *cgrp = seq_css(sf)->cgroup; u64 user, nice, system, idle, iowait, irq, softirq, steal, guest; u64 nr_migrations = 0; struct cpuacct_alistats *alistats; unsigned long nr_run = 0, nr_uninter = 0; int cpu; user = nice = system = idle = iowait = irq = softirq = steal = guest = 0; if (ca != &root_cpuacct) { struct cpuacct_usage_result res; for_each_possible_cpu(cpu) { if (!housekeeping_cpu(cpu, HK_FLAG_DOMAIN)) continue; rcu_read_lock(); __cpuacct_get_usage_result(ca, cpu, cgroup_tg(cgrp), &res); rcu_read_unlock(); user += res.user; nice += res.nice; system += res.system; irq += res.irq; softirq += res.softirq; steal += res.steal; guest += res.guest; guest += res.guest_nice; iowait += res.iowait; idle += res.idle; alistats = per_cpu_ptr(ca->alistats, cpu); nr_migrations += alistats->nr_migrations; nr_run += ca_running(ca, cpu); nr_uninter += ca_uninterruptible(ca, cpu); } } else { struct kernel_cpustat *kcpustat; for_each_possible_cpu(cpu) { kcpustat = per_cpu_ptr(ca->cpustat, cpu); user += kcpustat->cpustat[CPUTIME_USER]; nice += kcpustat->cpustat[CPUTIME_NICE]; system += kcpustat->cpustat[CPUTIME_SYSTEM]; irq += kcpustat->cpustat[CPUTIME_IRQ]; softirq += kcpustat->cpustat[CPUTIME_SOFTIRQ]; guest += kcpustat->cpustat[CPUTIME_GUEST]; guest += kcpustat->cpustat[CPUTIME_GUEST_NICE]; idle += get_idle_time(cpu); iowait += get_iowait_time(cpu); steal += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; alistats = per_cpu_ptr(ca->alistats, cpu); nr_migrations += alistats->nr_migrations; } nr_run = nr_running(); nr_uninter = nr_uninterruptible(); } seq_printf(sf, "user %lld\n", nsec_to_clock_t(user)); seq_printf(sf, "nice %lld\n", nsec_to_clock_t(nice)); seq_printf(sf, "system %lld\n", nsec_to_clock_t(system)); seq_printf(sf, "idle %lld\n", nsec_to_clock_t(idle)); seq_printf(sf, "iowait %lld\n", nsec_to_clock_t(iowait)); seq_printf(sf, "irq %lld\n", nsec_to_clock_t(irq)); seq_printf(sf, "softirq %lld\n", nsec_to_clock_t(softirq)); seq_printf(sf, "steal %lld\n", nsec_to_clock_t(steal)); seq_printf(sf, "guest %lld\n", nsec_to_clock_t(guest)); seq_printf(sf, "nr_migrations %lld\n", (u64)nr_migrations); seq_printf(sf, "nr_running %lld\n", (u64)nr_run); if ((long) nr_uninter < 0) nr_uninter = 0; seq_printf(sf, "nr_uninterruptible %lld\n", (u64)nr_uninter); return 0; } #define SCHED_LAT_STAT_SMP_WRITE(name, sidx) \ static void smp_write_##name(void *info) \ { \ struct cpuacct *ca = (struct cpuacct *)info; \ int i; \ \ for (i = SCHED_LAT_0_1; i < SCHED_LAT_NR_COUNT; i++) \ this_cpu_write(ca->lat_stat_cpu->item[sidx][i], 0); \ } \ SCHED_LAT_STAT_SMP_WRITE(sched_wait_latency, SCHED_LAT_WAIT); SCHED_LAT_STAT_SMP_WRITE(sched_wait_cgroup_latency, SCHED_LAT_CGROUP_WAIT); SCHED_LAT_STAT_SMP_WRITE(sched_block_latency, SCHED_LAT_BLOCK); SCHED_LAT_STAT_SMP_WRITE(sched_ioblock_latency, SCHED_LAT_IOBLOCK); smp_call_func_t smp_sched_lat_write_funcs[] = { smp_write_sched_wait_latency, smp_write_sched_wait_cgroup_latency, smp_write_sched_block_latency, smp_write_sched_ioblock_latency }; static int sched_lat_stat_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { struct cpuacct *ca = css_ca(css); enum sched_lat_stat_item idx = cft->private; smp_call_func_t func = smp_sched_lat_write_funcs[idx]; if (val != 0) return -EINVAL; func((void *)ca); smp_call_function(func, (void *)ca, 1); return 0; } static u64 sched_lat_stat_gather(struct cpuacct *ca, enum sched_lat_stat_item sidx, enum sched_lat_count_t cidx) { u64 sum = 0; int cpu; for_each_possible_cpu(cpu) sum += per_cpu_ptr(ca->lat_stat_cpu, cpu)->item[sidx][cidx]; return sum; } static int sched_lat_stat_show(struct seq_file *sf, void *v) { struct cpuacct *ca = css_ca(seq_css(sf)); enum sched_lat_stat_item s = seq_cft(sf)->private; /* CFS scheduling latency cgroup and task histgrams */ seq_printf(sf, "0-1ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_0_1)); seq_printf(sf, "1-4ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_1_4)); seq_printf(sf, "4-7ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_4_7)); seq_printf(sf, "7-10ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_7_10)); seq_printf(sf, "10-20ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_10_20)); seq_printf(sf, "20-30ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_20_30)); seq_printf(sf, "30-40ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_30_40)); seq_printf(sf, "40-50ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_40_50)); seq_printf(sf, "50-100ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_50_100)); seq_printf(sf, "100-500ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_100_500)); seq_printf(sf, "500-1000ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_500_1000)); seq_printf(sf, "1000-5000ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_1000_5000)); seq_printf(sf, "5000-10000ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_5000_10000)); seq_printf(sf, ">=10000ms: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_10000_INF)); seq_printf(sf, "total(ms): \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_TOTAL) / 1000000); seq_printf(sf, "nr: \t%llu\n", sched_lat_stat_gather(ca, s, SCHED_LAT_NR)); return 0; } #endif static struct cftype files[] = { { .name = "usage", .read_u64 = cpuusage_read, .write_u64 = cpuusage_write, }, { .name = "usage_user", .read_u64 = cpuusage_user_read, }, { .name = "usage_sys", .read_u64 = cpuusage_sys_read, }, { .name = "usage_percpu", .seq_show = cpuacct_percpu_seq_show, }, { .name = "usage_percpu_user", .seq_show = cpuacct_percpu_user_seq_show, }, { .name = "usage_percpu_sys", .seq_show = cpuacct_percpu_sys_seq_show, }, { .name = "usage_all", .seq_show = cpuacct_all_seq_show, }, { .name = "stat", .seq_show = cpuacct_stats_show, }, #ifdef CONFIG_SCHED_SLI { .name = "proc_stat", .seq_show = cpuacct_proc_stats_show, }, { .name = "wait_latency", .private = SCHED_LAT_WAIT, .write_u64 = sched_lat_stat_write, .seq_show = sched_lat_stat_show }, { .name = "cgroup_wait_latency", .private = SCHED_LAT_CGROUP_WAIT, .write_u64 = sched_lat_stat_write, .seq_show = sched_lat_stat_show }, { .name = "block_latency", .private = SCHED_LAT_BLOCK, .write_u64 = sched_lat_stat_write, .seq_show = sched_lat_stat_show }, { .name = "ioblock_latency", .private = SCHED_LAT_IOBLOCK, .write_u64 = sched_lat_stat_write, .seq_show = sched_lat_stat_show }, #endif { } /* terminate */ }; /* * charge this task's execution time to its accounting group. * * called with rq->lock held. */ void cpuacct_charge(struct task_struct *tsk, u64 cputime) { struct cpuacct *ca; int index = CPUACCT_STAT_SYSTEM; struct pt_regs *regs = task_pt_regs(tsk); if (regs && user_mode(regs)) index = CPUACCT_STAT_USER; rcu_read_lock(); for (ca = task_ca(tsk); ca; ca = parent_ca(ca)) this_cpu_ptr(ca->cpuusage)->usages[index] += cputime; rcu_read_unlock(); } /* * Add user/system time to cpuacct. * * Note: it's the caller that updates the account of the root cgroup. */ void cpuacct_account_field(struct task_struct *tsk, int index, u64 val) { struct cpuacct *ca; rcu_read_lock(); for (ca = task_ca(tsk); ca != &root_cpuacct; ca = parent_ca(ca)) this_cpu_ptr(ca->cpustat)->cpustat[index] += val; rcu_read_unlock(); } struct cgroup_subsys cpuacct_cgrp_subsys = { .css_alloc = cpuacct_css_alloc, .css_free = cpuacct_css_free, .legacy_cftypes = files, .early_init = true, }; #ifdef CONFIG_PSI static bool psi_v1_enable; static int __init setup_psi_v1(char *str) { return kstrtobool(str, &psi_v1_enable) == 0; } __setup("psi_v1=", setup_psi_v1); static int __init cgroup_v1_psi_init(void) { if (!psi_v1_enable) { static_branch_enable(&psi_v1_disabled); return 0; } cgroup_add_legacy_cftypes(&cpuacct_cgrp_subsys, cgroup_v1_psi_files); return 0; } late_initcall_sync(cgroup_v1_psi_init); #endif #ifdef CONFIG_RICH_CONTAINER bool child_cpuacct(struct task_struct *tsk) { struct cpuacct *ca = task_ca(tsk); if (ca && ca != &root_cpuacct) return true; return false; } bool check_rich_container(unsigned int cpu, unsigned int *index, bool *rich_container, unsigned int *total) { struct cpumask cpuset_allowed; struct task_struct *scenario; bool in_rich; int i, id = 0; rcu_read_lock(); in_rich = in_rich_container(current); rcu_read_unlock(); if (!in_rich) return false; *rich_container = true; read_lock(&tasklist_lock); scenario = rich_container_get_scenario(); get_task_struct(scenario); read_unlock(&tasklist_lock); rich_container_get_cpus(scenario, &cpuset_allowed); put_task_struct(scenario); *total = cpumask_weight(&cpuset_allowed); if (cpumask_test_cpu(cpu, &cpuset_allowed)) { for_each_cpu(i, &cpuset_allowed) { if (i == cpu) break; id++; } *index = id; return false; } /* Hide this cpu in the container */ return true; } /* 0 - cpu quota; 1 - cpuset.cpus; 2 - cpu.shares */ int sysctl_rich_container_cpuinfo_source; /* when cpu.shares */ unsigned int sysctl_rich_container_cpuinfo_sharesbase = 1024; static inline struct task_group *css_tg(struct cgroup_subsys_state *css) { return css ? container_of(css, struct task_group, css) : NULL; } static inline struct task_group *task_tg(struct task_struct *tsk) { return css_tg(task_css(tsk, cpu_cgrp_id)); } void rich_container_get_cpus(struct task_struct *tsk, struct cpumask *pmask) { struct task_group *tg; int i, cpus; /* cfs quota source */ if (sysctl_rich_container_cpuinfo_source == 0) { long quota, period; rcu_read_lock(); tg = task_tg(tsk); quota = tg_get_cfs_quota(tg); period = tg_get_cfs_period(tg); rcu_read_unlock(); if (quota == -1) { /* Fallback to use cpuset.cpus if quota not set */ goto cpuset_source; } else { /* period can't be 0 */ cpus = (quota + period - 1) / period; cpus = clamp(cpus, 1, (int)num_online_cpus()); cpumask_clear(pmask); for (i = 0; i < cpus; i++) cpumask_set_cpu(i, pmask); } return; } /* cpu.shares source */ if (sysctl_rich_container_cpuinfo_source == 2) { unsigned long shares; rcu_read_lock(); tg = task_tg(tsk); shares = scale_load_down(tg->shares); rcu_read_unlock(); /* sysctl_rich_container_cpuinfo_sharesbase can't be 0 */ cpus = (shares + sysctl_rich_container_cpuinfo_sharesbase - 1) / sysctl_rich_container_cpuinfo_sharesbase; cpus = clamp(cpus, 1, (int)num_online_cpus()); cpumask_clear(pmask); for (i = 0; i < cpus; i++) cpumask_set_cpu(i, pmask); return; } cpuset_source: /* cpuset.cpus source */ cpuset_cpus_allowed(tsk, pmask); } #endif