$ git clone -n https://gitee.com/src-anolis-os/anaconda.git /var/lib/mock/dist-an8.6-build-175176-58996/root/chroot_tmpdir/scmroot/anaconda Cloning into '/var/lib/mock/dist-an8.6-build-175176-58996/root/chroot_tmpdir/scmroot/anaconda'... $ git reset --hard origin/a8.6 HEAD is now at 1aaa9ef Fix some text describe $ wget -O anaconda-33.16.6.7.tar.bz2 http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.6.7.tar.bz2.8ab20f29d153b7e2a16423795b5d5755 --2022-12-06 13:14:56-- http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.6.7.tar.bz2.8ab20f29d153b7e2a16423795b5d5755 Resolving build.openanolis.cn (build.openanolis.cn)... 8.141.190.225, 8.141.190.228, 8.141.190.229, ... Connecting to build.openanolis.cn (build.openanolis.cn)|8.141.190.225|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3427324 (3.3M) [application/x-bzip2] Saving to: ‘anaconda-33.16.6.7.tar.bz2’ 0K .......... .......... .......... .......... .......... 1% 1019K 3s 50K .......... .......... .......... .......... .......... 2% 989K 3s 100K .......... .......... .......... .......... .......... 4% 1023K 3s 150K .......... .......... .......... .......... .......... 5% 1.37M 3s 200K .......... .......... .......... .......... .......... 7% 1.48M 3s 250K .......... .......... .......... .......... .......... 8% 1.48M 3s 300K .......... .......... .......... .......... .......... 10% 2.69M 2s 350K .......... .......... .......... .......... .......... 11% 1.42M 2s 400K .......... .......... .......... .......... .......... 13% 1.42M 2s 450K .......... .......... .......... .......... .......... 14% 3.09M 2s 500K .......... .......... .......... .......... .......... 16% 2.86M 2s 550K .......... .......... .......... .......... .......... 17% 2.87M 2s 600K .......... .......... .......... .......... .......... 19% 1.49M 2s 650K .......... .......... .......... .......... .......... 20% 2.57M 2s 700K .......... .......... .......... .......... .......... 22% 2.98M 2s 750K .......... .......... .......... .......... .......... 23% 2.34M 2s 800K .......... .......... .......... .......... .......... 25% 3.26M 1s 850K .......... .......... .......... .......... .......... 26% 24.5M 1s 900K .......... .......... .......... .......... .......... 28% 2.85M 1s 950K .......... .......... .......... .......... .......... 29% 2.97M 1s 1000K .......... .......... .......... .......... .......... 31% 2.34M 1s 1050K .......... .......... .......... .......... .......... 32% 4.62M 1s 1100K .......... .......... .......... .......... .......... 34% 11.8M 1s 1150K .......... .......... .......... .......... .......... 35% 2.99M 1s 1200K .......... .......... .......... .......... .......... 37% 2.98M 1s 1250K .......... .......... .......... .......... .......... 38% 66.3M 1s 1300K .......... .......... .......... .......... .......... 40% 2.87M 1s 1350K .......... .......... .......... .......... .......... 41% 3.45M 1s 1400K .......... .......... .......... .......... .......... 43% 13.6M 1s 1450K .......... .......... .......... .......... .......... 44% 3.26M 1s 1500K .......... .......... .......... .......... .......... 46% 3.50M 1s 1550K .......... .......... .......... .......... .......... 47% 7.83M 1s 1600K .......... .......... .......... .......... .......... 49% 3.47M 1s 1650K .......... .......... .......... .......... .......... 50% 7.99M 1s 1700K .......... .......... .......... .......... .......... 52% 5.44M 1s 1750K .......... .......... .......... .......... .......... 53% 5.87M 1s 1800K .......... .......... .......... .......... .......... 55% 6.06M 1s 1850K .......... .......... .......... .......... .......... 56% 5.72M 1s 1900K .......... .......... .......... .......... .......... 58% 5.90M 1s 1950K .......... .......... .......... .......... .......... 59% 5.85M 0s 2000K .......... .......... .......... .......... .......... 61% 5.71M 0s 2050K .......... .......... .......... .......... .......... 62% 12.5M 0s 2100K .......... .......... .......... .......... .......... 64% 6.66M 0s 2150K .......... .......... .......... .......... .......... 65% 5.93M 0s 2200K .......... .......... .......... .......... .......... 67% 6.19M 0s 2250K .......... .......... .......... .......... .......... 68% 8.23M 0s 2300K .......... .......... .......... .......... .......... 70% 8.44M 0s 2350K .......... .......... .......... .......... .......... 71% 4.31M 0s 2400K .......... .......... .......... .......... .......... 73% 16.1M 0s 2450K .......... .......... .......... .......... .......... 74% 8.68M 0s 2500K .......... .......... .......... .......... .......... 76% 6.39M 0s 2550K .......... .......... .......... .......... .......... 77% 11.0M 0s 2600K .......... .......... .......... .......... .......... 79% 8.44M 0s 2650K .......... .......... .......... .......... .......... 80% 6.67M 0s 2700K .......... .......... .......... .......... .......... 82% 10.9M 0s 2750K .......... .......... .......... .......... .......... 83% 4.82M 0s 2800K .......... .......... .......... .......... .......... 85% 8.10M 0s 2850K .......... .......... .......... .......... .......... 86% 21.5M 0s 2900K .......... .......... .......... .......... .......... 88% 6.04M 0s 2950K .......... .......... .......... .......... .......... 89% 17.0M 0s 3000K .......... .......... .......... .......... .......... 91% 11.3M 0s 3050K .......... .......... .......... .......... .......... 92% 9.23M 0s 3100K .......... .......... .......... .......... .......... 94% 6.86M 0s 3150K .......... .......... .......... .......... .......... 95% 7.89M 0s 3200K .......... .......... .......... .......... .......... 97% 15.6M 0s 3250K .......... .......... .......... .......... .......... 98% 8.14M 0s 3300K .......... .......... .......... .......... ...... 100% 6.52M=0.9s 2022-12-06 13:14:59 (3.62 MB/s) - ‘anaconda-33.16.6.7.tar.bz2’ saved [3427324/3427324]