$ git clone -n https://gitee.com/src-anolis-os/anaconda.git /var/lib/mock/dist-an8.7-build-263970-63945/root/chroot_tmpdir/scmroot/anaconda Cloning into '/var/lib/mock/dist-an8.7-build-263970-63945/root/chroot_tmpdir/scmroot/anaconda'... $ git reset --hard 324ff71c0166f552ed0d7fd88fa76b880cf705d9 HEAD is now at 324ff71 update to anaconda-33.16.8.9-1.el8_8 $ wget -O anaconda-33.16.8.9.tar.bz2 http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.8.9.tar.bz2.7d5daf2ca4f438f6d68082c0631c963a --2023-05-17 04:37:12-- http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.8.9.tar.bz2.7d5daf2ca4f438f6d68082c0631c963a Resolving build.openanolis.cn (build.openanolis.cn)... 8.131.87.1 Connecting to build.openanolis.cn (build.openanolis.cn)|8.131.87.1|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3399040 (3.2M) [application/x-bzip2] Saving to: ‘anaconda-33.16.8.9.tar.bz2’ 0K .......... .......... .......... .......... .......... 1% 3.78M 1s 50K .......... .......... .......... .......... .......... 3% 7.46M 1s 100K .......... .......... .......... .......... .......... 4% 7.62M 1s 150K .......... .......... .......... .......... .......... 6% 7.60M 1s 200K .......... .......... .......... .......... .......... 7% 7.96M 0s 250K .......... .......... .......... .......... .......... 9% 7.63M 0s 300K .......... .......... .......... .......... .......... 10% 41.6M 0s 350K .......... .......... .......... .......... .......... 12% 7.64M 0s 400K .......... .......... .......... .......... .......... 13% 7.51M 0s 450K .......... .......... .......... .......... .......... 15% 8.73M 0s 500K .......... .......... .......... .......... .......... 16% 33.8M 0s 550K .......... .......... .......... .......... .......... 18% 7.99M 0s 600K .......... .......... .......... .......... .......... 19% 8.03M 0s 650K .......... .......... .......... .......... .......... 21% 54.2M 0s 700K .......... .......... .......... .......... .......... 22% 7.98M 0s 750K .......... .......... .......... .......... .......... 24% 8.54M 0s 800K .......... .......... .......... .......... .......... 25% 37.0M 0s 850K .......... .......... .......... .......... .......... 27% 8.31M 0s 900K .......... .......... .......... .......... .......... 28% 55.9M 0s 950K .......... .......... .......... .......... .......... 30% 8.32M 0s 1000K .......... .......... .......... .......... .......... 31% 8.82M 0s 1050K .......... .......... .......... .......... .......... 33% 40.9M 0s 1100K .......... .......... .......... .......... .......... 34% 8.01M 0s 1150K .......... .......... .......... .......... .......... 36% 121M 0s 1200K .......... .......... .......... .......... .......... 37% 8.25M 0s 1250K .......... .......... .......... .......... .......... 39% 48.7M 0s 1300K .......... .......... .......... .......... .......... 40% 9.67M 0s 1350K .......... .......... .......... .......... .......... 42% 32.4M 0s 1400K .......... .......... .......... .......... .......... 43% 46.3M 0s 1450K .......... .......... .......... .......... .......... 45% 8.71M 0s 1500K .......... .......... .......... .......... .......... 46% 69.3M 0s 1550K .......... .......... .......... .......... .......... 48% 8.62M 0s 1600K .......... .......... .......... .......... .......... 49% 70.0M 0s 1650K .......... .......... .......... .......... .......... 51% 57.9M 0s 1700K .......... .......... .......... .......... .......... 52% 8.83M 0s 1750K .......... .......... .......... .......... .......... 54% 69.2M 0s 1800K .......... .......... .......... .......... .......... 55% 8.47M 0s 1850K .......... .......... .......... .......... .......... 57% 56.9M 0s 1900K .......... .......... .......... .......... .......... 58% 64.9M 0s 1950K .......... .......... .......... .......... .......... 60% 9.03M 0s 2000K .......... .......... .......... .......... .......... 61% 88.8M 0s 2050K .......... .......... .......... .......... .......... 63% 48.8M 0s 2100K .......... .......... .......... .......... .......... 64% 4.89M 0s 2150K .......... .......... .......... .......... .......... 66% 621M 0s 2200K .......... .......... .......... .......... .......... 67% 570M 0s 2250K .......... .......... .......... .......... .......... 69% 6.73M 0s 2300K .......... .......... .......... .......... .......... 70% 242M 0s 2350K .......... .......... .......... .......... .......... 72% 68.1M 0s 2400K .......... .......... .......... .......... .......... 73% 8.25M 0s 2450K .......... .......... .......... .......... .......... 75% 69.5M 0s 2500K .......... .......... .......... .......... .......... 76% 82.8M 0s 2550K .......... .......... .......... .......... .......... 78% 8.36M 0s 2600K .......... .......... .......... .......... .......... 79% 87.1M 0s 2650K .......... .......... .......... .......... .......... 81% 82.7M 0s 2700K .......... .......... .......... .......... .......... 82% 55.8M 0s 2750K .......... .......... .......... .......... .......... 84% 8.51M 0s 2800K .......... .......... .......... .......... .......... 85% 159M 0s 2850K .......... .......... .......... .......... .......... 87% 63.8M 0s 2900K .......... .......... .......... .......... .......... 88% 78.5M 0s 2950K .......... .......... .......... .......... .......... 90% 8.52M 0s 3000K .......... .......... .......... .......... .......... 91% 128M 0s 3050K .......... .......... .......... .......... .......... 93% 72.5M 0s 3100K .......... .......... .......... .......... .......... 94% 91.8M 0s 3150K .......... .......... .......... .......... .......... 96% 8.38M 0s 3200K .......... .......... .......... .......... .......... 97% 93.1M 0s 3250K .......... .......... .......... .......... .......... 99% 60.9M 0s 3300K .......... ......... 100% 642M=0.2s 2023-05-17 04:37:12 (14.6 MB/s) - ‘anaconda-33.16.8.9.tar.bz2’ saved [3399040/3399040]