$ git clone -n https://gitee.com/gcdota930915/anaconda.git /var/lib/mock/dist-an8.6-build-202630-60984/root/chroot_tmpdir/scmroot/anaconda Cloning into '/var/lib/mock/dist-an8.6-build-202630-60984/root/chroot_tmpdir/scmroot/anaconda'... $ git reset --hard origin/a8.6 HEAD is now at 648af69 Reconfig kdump configuration $ wget -O anaconda-33.16.6.7.tar.bz2 http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.6.7.tar.bz2.8ab20f29d153b7e2a16423795b5d5755 --2023-01-28 23:18:53-- http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.6.7.tar.bz2.8ab20f29d153b7e2a16423795b5d5755 Resolving build.openanolis.cn (build.openanolis.cn)... 8.141.190.231, 8.141.190.226, 8.141.190.227, ... Connecting to build.openanolis.cn (build.openanolis.cn)|8.141.190.231|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3427324 (3.3M) [application/x-bzip2] Saving to: ‘anaconda-33.16.6.7.tar.bz2’ 0K .......... .......... .......... .......... .......... 1% 1.22M 3s 50K .......... .......... .......... .......... .......... 2% 2.60M 2s 100K .......... .......... .......... .......... .......... 4% 1.69M 2s 150K .......... .......... .......... .......... .......... 5% 1.75M 2s 200K .......... .......... .......... .......... .......... 7% 3.05M 2s 250K .......... .......... .......... .......... .......... 8% 1.78M 2s 300K .......... .......... .......... .......... .......... 10% 3.10M 1s 350K .......... .......... .......... .......... .......... 11% 2.85M 1s 400K .......... .......... .......... .......... .......... 13% 3.81M 1s 450K .......... .......... .......... .......... .......... 14% 1.71M 1s 500K .......... .......... .......... .......... .......... 16% 3.46M 1s 550K .......... .......... .......... .......... .......... 17% 3.32M 1s 600K .......... .......... .......... .......... .......... 19% 3.40M 1s 650K .......... .......... .......... .......... .......... 20% 3.45M 1s 700K .......... .......... .......... .......... .......... 22% 55.3M 1s 750K .......... .......... .......... .......... .......... 23% 3.26M 1s 800K .......... .......... .......... .......... .......... 25% 3.39M 1s 850K .......... .......... .......... .......... .......... 26% 3.35M 1s 900K .......... .......... .......... .......... .......... 28% 3.06M 1s 950K .......... .......... .......... .......... .......... 29% 65.6M 1s 1000K .......... .......... .......... .......... .......... 31% 3.65M 1s 1050K .......... .......... .......... .......... .......... 32% 2.36M 1s 1100K .......... .......... .......... .......... .......... 34% 344M 1s 1150K .......... .......... .......... .......... .......... 35% 6.12M 1s 1200K .......... .......... .......... .......... .......... 37% 2.49M 1s 1250K .......... .......... .......... .......... .......... 38% 14.9M 1s 1300K .......... .......... .......... .......... .......... 40% 5.65M 1s 1350K .......... .......... .......... .......... .......... 41% 413M 1s 1400K .......... .......... .......... .......... .......... 43% 2.98M 1s 1450K .......... .......... .......... .......... .......... 44% 391M 1s 1500K .......... .......... .......... .......... .......... 46% 3.66M 1s 1550K .......... .......... .......... .......... .......... 47% 3.78M 1s 1600K .......... .......... .......... .......... .......... 49% 34.0M 0s 1650K .......... .......... .......... .......... .......... 50% 41.6M 0s 1700K .......... .......... .......... .......... .......... 52% 3.54M 0s 1750K .......... .......... .......... .......... .......... 53% 64.0M 0s 1800K .......... .......... .......... .......... .......... 55% 3.58M 0s 1850K .......... .......... .......... .......... .......... 56% 32.9M 0s 1900K .......... .......... .......... .......... .......... 58% 3.49M 0s 1950K .......... .......... .......... .......... .......... 59% 44.6M 0s 2000K .......... .......... .......... .......... .......... 61% 4.26M 0s 2050K .......... .......... .......... .......... .......... 62% 26.2M 0s 2100K .......... .......... .......... .......... .......... 64% 17.6M 0s 2150K .......... .......... .......... .......... .......... 65% 4.25M 0s 2200K .......... .......... .......... .......... .......... 67% 47.3M 0s 2250K .......... .......... .......... .......... .......... 68% 5.65M 0s 2300K .......... .......... .......... .......... .......... 70% 7.18M 0s 2350K .......... .......... .......... .......... .......... 71% 41.2M 0s 2400K .......... .......... .......... .......... .......... 73% 4.02M 0s 2450K .......... .......... .......... .......... .......... 74% 284M 0s 2500K .......... .......... .......... .......... .......... 76% 6.58M 0s 2550K .......... .......... .......... .......... .......... 77% 7.31M 0s 2600K .......... .......... .......... .......... .......... 79% 37.5M 0s 2650K .......... .......... .......... .......... .......... 80% 4.99M 0s 2700K .......... .......... .......... .......... .......... 82% 14.2M 0s 2750K .......... .......... .......... .......... .......... 83% 27.0M 0s 2800K .......... .......... .......... .......... .......... 85% 8.05M 0s 2850K .......... .......... .......... .......... .......... 86% 7.49M 0s 2900K .......... .......... .......... .......... .......... 88% 26.4M 0s 2950K .......... .......... .......... .......... .......... 89% 7.61M 0s 3000K .......... .......... .......... .......... .......... 91% 8.35M 0s 3050K .......... .......... .......... .......... .......... 92% 15.0M 0s 3100K .......... .......... .......... .......... .......... 94% 103M 0s 3150K .......... .......... .......... .......... .......... 95% 5.60M 0s 3200K .......... .......... .......... .......... .......... 97% 11.3M 0s 3250K .......... .......... .......... .......... .......... 98% 47.4M 0s 3300K .......... .......... .......... .......... ...... 100% 6.96M=0.7s 2023-01-28 23:18:54 (4.99 MB/s) - ‘anaconda-33.16.6.7.tar.bz2’ saved [3427324/3427324]