$ git clone -n https://gitee.com/src-anolis-os/anaconda.git /var/lib/mock/dist-an8.8-build-274719-64251/root/chroot_tmpdir/scmroot/anaconda Cloning into '/var/lib/mock/dist-an8.8-build-274719-64251/root/chroot_tmpdir/scmroot/anaconda'... $ git fetch origin a8:KOJI_FETCH_HEAD From https://gitee.com/src-anolis-os/anaconda * [new branch] a8 -> KOJI_FETCH_HEAD $ git reset --hard KOJI_FETCH_HEAD HEAD is now at 3b3b048 anaconda: fix multi variants error $ wget -O anaconda-33.16.8.9.tar.bz2 http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.8.9.tar.bz2.7d5daf2ca4f438f6d68082c0631c963a --2023-06-15 00:45:43-- http://build.openanolis.cn/kojifiles/upstream-source/anaconda-33.16.8.9.tar.bz2.7d5daf2ca4f438f6d68082c0631c963a Resolving build.openanolis.cn (build.openanolis.cn)... 8.131.87.1 Connecting to build.openanolis.cn (build.openanolis.cn)|8.131.87.1|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3399040 (3.2M) [application/x-bzip2] Saving to: ‘anaconda-33.16.8.9.tar.bz2’ 0K .......... .......... .......... .......... .......... 1% 968K 3s 50K .......... .......... .......... .......... .......... 3% 6.71M 2s 100K .......... .......... .......... .......... .......... 4% 50.7M 1s 150K .......... .......... .......... .......... .......... 6% 112M 1s 200K .......... .......... .......... .......... .......... 7% 323K 3s 250K .......... .......... .......... .......... .......... 9% 174M 2s 300K .......... .......... .......... .......... .......... 10% 110M 2s 350K .......... .......... .......... .......... .......... 12% 88.5M 2s 400K .......... .......... .......... .......... .......... 13% 7.26M 1s 450K .......... .......... .......... .......... .......... 15% 10.2M 1s 500K .......... .......... .......... .......... .......... 16% 207M 1s 550K .......... .......... .......... .......... .......... 18% 72.2M 1s 600K .......... .......... .......... .......... .......... 19% 13.1M 1s 650K .......... .......... .......... .......... .......... 21% 366M 1s 700K .......... .......... .......... .......... .......... 22% 146M 1s 750K .......... .......... .......... .......... .......... 24% 108M 1s 800K .......... .......... .......... .......... .......... 25% 194M 1s 850K .......... .......... .......... .......... .......... 27% 311M 1s 900K .......... .......... .......... .......... .......... 28% 12.8M 1s 950K .......... .......... .......... .......... .......... 30% 40.0M 1s 1000K .......... .......... .......... .......... .......... 31% 46.5M 1s 1050K .......... .......... .......... .......... .......... 33% 196M 0s 1100K .......... .......... .......... .......... .......... 34% 199M 0s 1150K .......... .......... .......... .......... .......... 36% 20.1M 0s 1200K .......... .......... .......... .......... .......... 37% 64.0M 0s 1250K .......... .......... .......... .......... .......... 39% 138M 0s 1300K .......... .......... .......... .......... .......... 40% 15.3M 0s 1350K .......... .......... .......... .......... .......... 42% 84.0M 0s 1400K .......... .......... .......... .......... .......... 43% 180M 0s 1450K .......... .......... .......... .......... .......... 45% 205M 0s 1500K .......... .......... .......... .......... .......... 46% 184M 0s 1550K .......... .......... .......... .......... .......... 48% 114M 0s 1600K .......... .......... .......... .......... .......... 49% 164M 0s 1650K .......... .......... .......... .......... .......... 51% 289M 0s 1700K .......... .......... .......... .......... .......... 52% 186M 0s 1750K .......... .......... .......... .......... .......... 54% 96.8M 0s 1800K .......... .......... .......... .......... .......... 55% 31.0M 0s 1850K .......... .......... .......... .......... .......... 57% 19.7M 0s 1900K .......... .......... .......... .......... .......... 58% 28.5M 0s 1950K .......... .......... .......... .......... .......... 60% 157M 0s 2000K .......... .......... .......... .......... .......... 61% 32.3M 0s 2050K .......... .......... .......... .......... .......... 63% 18.8M 0s 2100K .......... .......... .......... .......... .......... 64% 167M 0s 2150K .......... .......... .......... .......... .......... 66% 199M 0s 2200K .......... .......... .......... .......... .......... 67% 177M 0s 2250K .......... .......... .......... .......... .......... 69% 195M 0s 2300K .......... .......... .......... .......... .......... 70% 84.0M 0s 2350K .......... .......... .......... .......... .......... 72% 90.8M 0s 2400K .......... .......... .......... .......... .......... 73% 11.0M 0s 2450K .......... .......... .......... .......... .......... 75% 29.0M 0s 2500K .......... .......... .......... .......... .......... 76% 34.8M 0s 2550K .......... .......... .......... .......... .......... 78% 169M 0s 2600K .......... .......... .......... .......... .......... 79% 155M 0s 2650K .......... .......... .......... .......... .......... 81% 185M 0s 2700K .......... .......... .......... .......... .......... 82% 172M 0s 2750K .......... .......... .......... .......... .......... 84% 115M 0s 2800K .......... .......... .......... .......... .......... 85% 534M 0s 2850K .......... .......... .......... .......... .......... 87% 115M 0s 2900K .......... .......... .......... .......... .......... 88% 169M 0s 2950K .......... .......... .......... .......... .......... 90% 157M 0s 3000K .......... .......... .......... .......... .......... 91% 214M 0s 3050K .......... .......... .......... .......... .......... 93% 190M 0s 3100K .......... .......... .......... .......... .......... 94% 197M 0s 3150K .......... .......... .......... .......... .......... 96% 185M 0s 3200K .......... .......... .......... .......... .......... 97% 109M 0s 3250K .......... .......... .......... .......... .......... 99% 288M 0s 3300K .......... ......... 100% 685M=0.3s 2023-06-15 00:45:44 (11.8 MB/s) - ‘anaconda-33.16.8.9.tar.bz2’ saved [3399040/3399040]